The mission of the Scappucci group at QuTech is to design, realize, and study innovative materials by the assembly of group IV elements. The goal is to tailor the structural and electronic properties of such materials for applications in quantum technologies. To achieve our goals, we use experimental techniques such as crystal growth, micro/nanofabrication, and cryogenic electrical measurements.
The success in obtaining materials of sufficient purity underpinned our ability to manipulate semiconductors into electronic devices. The availability of such “electronic-grade” materials are at the basis of the information age. To empower quantum computing, we need to extend our understanding of materials functionality from electronic grade to “quantum-grade”. We know the material science behind a good transistor: what are the requirement of materials that will enable qubits for the quantum information age of tomorrow?
As we are moving into the next phase of engineering qubit systems in the large numbers required for useful quantum computing, our research at QuTech is contributing answers the following questions, ranging from technological to basic science: can we make qubits in an industrial fab? How do we connect qubits and scale up their number? Can we devise new materials and concepts for the next generation of quantum hardware?
Our principal material platforms are isotopically purified Si metal-oxide-semiconductor, strained Si/SiGe and strained Ge/SiGe

Below a list of recent papers (2018-2020) on group IV semiconductors

  1. N.W. Hendrickx, W.I.L. Lawrie, M. Russ, F. van Riggelen, S.L. de Snoo, R.N. Schouten,  A. Sammak, G. Scappucci, M. Veldhorst, A four-qubit germanium quantum processor
    arXiv:2009.04268, http//arxiv.org/abs/2009.04268
  2. F. van Riggelen, N. W. Hendrickx, W. I. L. Lawrie, M. Russ, A. Summak, G. Scappucci, M. Veldhorst, A two-dimensional array of single-hole quantum dots, arXiv:2008.11666, http//arxiv.org/abs/2008.11666
  3. M. Lodari, N. W. Hendrickx, W. I. L. Lawrie, T. -K. Hsiao, L. M. K. Vandersypen, A. Sammak, M. Veldhorst, G. Scappucci, Low percolation density and charge noise with holes in germanium, arXiv:2007.06328, http//arxiv.org/abs/2007.06328
  4. W. I. L. Lawrie, N. W. Hendrickx, F. van Riggelen, M. Russ, L. Petit, A. Sammak, G. Scappucci, M. Veldhorst, Spin relaxation benchmarks and individual qubit addressability for holes in quantum dots, arXiv:2006.12563, http//arxiv.org/abs/2006.12563
  5. B. Paquelet Wuetz, M. P. Losert, A. Tosato, M. Lodari, P. L. Bavdaz, L. Stehouwer, P. Amin, J. S. Clarke, S. N. Coppersmith, A. Sammak, M. Veldhorst, M. Friesen, Giordano Scappucci, Effect of quantum Hall edge strips on valley splitting in silicon quantum wells, arXiv:2006.02305, http//arxiv.org/abs/2006.02305
  6. P. Del Vecchio, M. Lodari, A. Sammak, G. Scappucci, O. Moutanabbir, Vanishing Zeeman energy in a two-dimensional hole gas, arXiv:2006.00102, https://arxiv.org/abs/2006.00102
  7. P. Harvey-Collard, G. Zheng, J. Dijkema, N. Samkharadze, A. Sammak, G. Scappucci, L. M. K. Vandersypen, On-chip microwave filters for high-impedance resonators with gate-defined quantum dot, arXiv:2005.05411, https://arxiv.org/abs/2005.05411 
  8. Y. Xu, F. K. Unseld, A. Corna, A. M. J. Zwerver, A. Sammak, D. Brousse, N. Samkharadze, S. V. Amitonov, M. Veldhorst, G. Scappucci, R. Ishihara, L. M. K. Vandersypen, On-chip Integration of Si/SiGe-based Quantum Dots and Switched-capacitor Circuits, arXiv:2005.03851, https://arxiv.org/abs/2005.03851  
  9. G. Scappucci, C. Kloeffel, F. A. Zwanenburg, D. Loss, M. Myronov, J.-J. Zhang, S. De Franceschi, G. Katsaros, M. Veldhorst, The germanium quantum information route, arXiv:2004.08133, https://arxiv.org/abs/2004.08133 
  10. N. W. Hendrickx, W. I. L. Lawrie, L. Petit, A. Sammak, G. Scappucci, M. Veldhorst, A single-hole spin qubit, Nat Commun. 3478 (2020),  https://doi.org/10.1038/s41467-020-17211-7
  11. B. P. Wuetz, P. L. Bavdaz, L.A. Yeoh, R. Schouten, H. van der Does, M. Tiggelman, D. Sabbagh, A. Sammak, C.G. Almudever, F. Sebastiano, J.S. Clarke, M. Veldhorst, and G. Scappucci, Multiplexed quantum transport using commercial off-the-shelf CMOS at sub-kelvin temperatures. npj Quantum Information 6, 43 (2020), https://www.nature.com/articles/s41534-020-0274-4
  12. W. I. L. Lawrie, H. G. J. Eenink, N. W. Hendrickx, J. M. Boter, L. Petit, S. Amitonov, M. Lodari, B. Paquelet-Wutz, C. Volk, S. Phillips, G. Droulers, N. Kalhor, D. Brousse, A. Sammak, L.M.K. Vandersypen, G. Scappucci, and M. Veldhorst., Quantum Dot Arrays in Silicon and Germanium, Applied Physics Letters 116, 080501 (2020), https://aip.scitation.org/doi/abs/10.1063/5.0002013
  13. N. Hendrickx, D. Franke, A. Sammak, G. Scappucci, and M. Veldhorst., Fast two-qubit logic with holes in germanium, Nature, 577, 487 (2020), https://www.nature.com/articles/s41586-019-1919-3
  14. M. Lodari, A. Tosato, D. Sabbagh, M. Schubert, G. Capellini, A. Sammak, M. Veldhorst, and G. Scappucci, Light effective hole mass in undoped Ge/SiGe quantum wells, Physical Review 100, 041304(R) (2019), https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.041304
  15. D. Sabbagh, N. Thomas, J. Torres, R. Pillarisetty, P. Amin, H.C. George, K. Singh, A. Budrevich, M. Robinson, D. Merrill, L. Ross, J. Roberts, L. Lampert, L. Massa, S.V. Amitonov, J.M. Boter, G. Droulers, H.G.J. Eenink, M. van Hezel, D. Donelson, M. Veldhorst, L.M.K. Vandersypen, J.S. Clarke, and G. Scappucci, Quantum Transport Properties of Industrial 28Si/28SiO₂, Physical Review Applied 12, 014013 (2019), https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.12.014013
  16. G. Zheng, N. Samkharadze, M.L. Noordam, N. Kalhor, D. Brousse, A. Sammak, G. Scappucci, and L.M.K. Vandersypen, Rapid gate-based spin read-out in silicon using an on-chip resonator, Nature Nanotechnology 14, 742 (2019), https://doi.org/10.1038/s41565-019-0488-9
  17. N.W. Hendrickx, M.L.V. Tagliaferri, M. Kouwenhoven, R. Li, D.P. Franke, A. Sammak, A. Brinkman, G. Scappucci, and M. Veldhorst, Ballistic supercurrent discretization and micrometer-long Josephson coupling in germanium, Physical Review B 99, 075435 (2019), https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.075435
  18. F. Vigneau, R. Mizokuchi, D.C. Zanuz, X. Huang, S. Tan, R. Maurand, S. Frolov, A. Sammak, G. Scappucci, F. Lefloch, and S.D. Franceschi. Germanium Quantum-Well Josephson Field-Effect Transistors and Interferometers, Nano Letters 19, 1023 (2019), https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.8b04275
  19. Sammak, D. Sabbagh, N.W. Hendrickx, M. Lodari, B.P. Wuetz, A. Tosato, L. Yeoh, M. Bollani, M. Virgilio, M.A. Schubert, P. Zaumseil, G. Capellini, M. Veldhorst, and G. Scappucci, Shallow and Undoped Germanium Quantum Wells: A Playground for Spin and Hybrid Quantum Technology, Advanced Functional Materials 29, 1807613 (2019), https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201807613
  20. R. Pillarisetty, N. Thomas, H. George, K. Singh, J. Roberts, L. Lampert, P. Amin, T. Watson, G. Zheng, J. Torres, and others, Qubit Device Integration Using Advanced Semiconductor Manufacturing Process Technology, Technical Digest-International Electron Devices Meeting, IEDM (2019), https://ieeexplore.ieee.org/abstract/document/8614624/
  21. N.W. Hendrickx, D.P. Franke, A. Sammak, M. Kouwenhoven, D.S. D, L.Y. L, R. Li, M.L.V. Tagliaferri, M. Virgilio, G. Capellini, G. Scappucci, and M. Veldhorst, Gate-controlled quantum dots and superconductivity in planar germanium, Nature Communications 9, 2835 (2018), https://www.nature.com/articles/s41467-018-05299-x
  22. N. Samkharadze, G. Zheng, N. Kalhor, D. Brousse, A. Sammak, U.C. Mendes, A. Blais, G. Scappucci, and L.M.K. Vandersypen, Strong spin-photon coupling in silicon, Science 359, 1123 (2018), https://doi.org/10.1126/science.aar4054